_
-
Ω
Ø
Ν
0
Q
ij.
⊐
Q
≥
3
(
>
\sim
Ω
7
+
\boldsymbol{L}

Title Power Electronics	Code 1010334131010330209
Field	Year / Semester
Control Engineering and Robotics	2/3
Specialty	Course
•	core
Hours	Number of credits
Lectures: 3 Classes: - Laboratory: 2 Projects / seminars: -	8
	Language
	polish

Lecturer:

dr inż. Jan Deskur

Instytut Automatyki i Inżynierii Informatycznej

e-mail: Jan.Deskur@put.poznan.pl

Faculty:

Faculty of Electrical Engineering

ul. Piotrowo 3A 60-965 Poznań

tel. (061) 665-2539, fax. (061) 665-2548 e-mail: office_deef@put.poznan.pl

Status of the course in the study program:

Power Electronics

Assumptions and objectives of the course:

Knowledge concerning principles of operation of power electronics converters, rectifiers, AC/AC converters, AC/DC converters and inverters.

Contents of the course (course description):

Lectures: Introduction to power electronics. Overview of power semiconductor switches. Line-frequency phase commutated converters: analysis, simplified energy and signal models. Switch-mode converters: analysis, averaged models. DC/DC converters, inverters. Resonant converters. Power supply applications. Electric utility applications. Current harmonics. Developmental prospects of power electronics: new types of devices, "intelligent" modules.

Laboratory: thyristor phase controlled rectifiers, switch-mode DC/DC converters, inverters.

Introductory courses and the required pre-knowledge:

Basic knowledge of the theory of electric circuits.

Courses form and teaching methods:

Lectures, laboratory exercises.

Form and terms of complete the course - requirements and assessment methods:

Written examination, evaluation of laboratory reports.

Basic Bibliography:

Additional Bibliography: